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We report the development of a theory of the self-action of waves in nonlinear chiral media. The basic
equations of nonlinear electromagnetism in a chiral medium are reduced to a set of nonlinear coupled
Schrodinger equations (NCSE). A partial solution of the NCSE in the form of planar waves and their
stability with respect to small perturbations are examined. The Hamiltonian form of the NCSE, as well
as conservation principles and the soliton solutions of the NCSE are presented. The presence of chirality
is shown to result in an asymmetry of the solitonic spectrum with respect to the handedness of the field.
A theory of the interaction of dark and bright solitons in defocusing chiral media is developed. The ob-
tained results, their possible generalization, and their applications are discussed.
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1. INTRODUCTION

Chiral media are isotropic birefringent substances
whose microstructure is handed. The handedness im-
parts them special electromagnetic properties that were
first recognized at optical frequencies almost 175 years
ago [1]. When an elliptically polarized plane wave is in-
cident on a slab made of a linear chiral material, the vi-
bration ellipse of the transmitted plane wave is found to
be different from that of the incident plane wave in two
respects: (i) the tilt angle and (ii) the axial ratio [2]. Fol-
lowing Pasteur [1], chiral media are sometimes called nat-
ural optically active media.

There is currently considerable interest in studying
chiral media, owing to their extraordinary electromagnet-
ic and optical properties and a variety of actual and po-
tential applications in radiophysics, microwaves, and visi-
ble light optics [2—4]. This interest has stimulated the
development of the linear electrodynamics of chiral
media. Theoretical investigations, normally carried out
in the frequency domain, exploit the Bohren transform to
convert the electric and the magnetic field phasors into
frequency-domain Beltrami fields [2]. The success of the
Bohren transform for frequency-domain fields in a chiral
medium has led recently to the development of the
Beltrami-Maxwell postulates for time-dependent Bel-
trami fields in any material medium [5]. The electro-
dynamic consequences of this formalism have been exam-
ined in free space [6,7], as well as in linear homogeneous
media [8].

Attention must now shift to theoretical analysis of non-
linear phenomena in chiral media, because recent experi-
mental results are intriguing and promise dividends in
biophysics [9] and materials sciences [10]. Recently, the
application of chiral synthetic materials to the operation
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of distributed feedback lasers has been pointed out by
Flood and Jaggard [11]. In our opinion, in order to de-
velop the theoretical basis of electrodynamics of non-
linear chiral media the following problems should be ana-
lyzed: (i) the self-action of waves, (ii) the interaction of n
waves with different frequencies, and (iii) wave kinetics.

Our aim in this paper is to consider the first of the
three problems; that is, to develop a theory of the self-
action of waves in nonlinear chiral media. The main
feature of a chiral medium is its circular birefringence,
which is strongly frequency dependent [12]. Thus, chiral
media are akin to other media with strong wave-wave in-
teractions at a given frequency, such as nonlinear
birefringent crystals [13,14], bimodal nonlinear optical
fibers [15—-19], and plasmas [20].

An important feature of a chiral medium is that its cu-
bic nonlinearity is tensorial [21]. Together with
birefringence, this property entails that the self-action in
a nonlinear chiral medium must be described by a general
system of two nonlinear coupled Schrodinger equations
(NCSE).

Note that only specific representations of the NCSE
are conventionally used for analytical treatment. When
the medium is unirefringent and the nonlinearity can be
described by a scalar parameter, the NCSE reduce to the
exactly integrable Manakov system [22] that can be
solved using the inverse scattering method. The
Manakov system describes the effect of vector self-
focusing or self-defocusing in Kerr dielectrics. In gen-
eral, the NCSE are not integrable [23,24] and either ap-
proximate analytical or numerical methods must be ap-
plied. Haelterman and Sheppard [25-27] considered a
unirefringent medium with tensorial nonlinearity. The
NCSE for opposing waves with the same phase velocities
were examined by Malomed and Tasgal [18]. Eleonskii
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et al. [16] and Bhakta [20] analyzed the general represen-
tation of the NCSE. The Karpman-Maslov [28] and
Hirota [20] methods are potentially useful for numerical
integration of the NCSE.

Here, we develop a phenomenological theory of the
self-action of waves in nonlinear chiral media. On no ac-
count can we therefore ignore birefringence. Our theory
is based on general methods of the phenomenological
nonlinear optics [21,29] extended to chiral media and on
the Beltrami-Maxwell formalism adapted to nonlinear
problems.

This paper is arranged as follows: In Sec. II we give
the basic equations of nonlinear electromagnetism in a
chiral medium and reduce them to the NCSE form. A
partial solution of the NCSE in the form of planar waves
and the problem of their stability with respect to small
perturbations are considered in Sec. III. In Sec. IV we
present the Hamiltonian form of the NCSE as well as
conservation principles. Soliton solutions of the NCSE
are discussed in Sec. V, particularly a theory of the in-
teraction of dark and bright solitons in defocusing chiral
media. The obtained results, their possible generaliza-
tion, and their application are discussed in Sec. VI.

II. BASIC RELATIONS

We start from the Maxwell curl postulates expressed in
matrix notation as

vxXU0=3,V (1
with the six-vectors U and V given by

E

0= 4

Here and hereafter in all six-dimensional equations it is
assumed that

vV o0
oV

The constitutive relations of a nonlinear chiral medium
can be written in matrix form as

V=AU0+VNL )

The first term on the right-hand side of this equation cor-
responds to the linear approximation, with [30]

AC=[' At—nO(r)dr . 3)
The constitutive operator A(¢) has the form

—vyI
e()I

—p(I

A= —y(01

) 4)

where I is the 3 X 3 unit matrix, while the scalars €(¢) and
u(t), as well as the pseudoscalar y (), are null-valued for
negative values of . We observe here that the most gen-
eral, isotropic, linear, homogeneous medium can be
characterized by the chosen A(z) [31,32]. In particular,
v(t) delineates the linear part of the chiral property of
the medium, it being identically null for an achiral isotro-
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pic medium. Typically, y(¢) represents a small first-
order—but a highly significant and easily observable
[33,34] —effect.

The second term on the right-hand side of (2) describes
the contribution from nonlinearity, which is assumed to
be cubic and small compared to the first one. Parentheti-
cally, although quadratic nonlinearity is possible, we con-
sider only cubic nonlinearity because our aim, as noted
above, is to analyze the self-action of waves. Thus, the
nonlinear term in (2) can be represented by

VNL:fowfowfowAA[j(T[,Tz;Tg,)Ui(t_Tl_’rz)
ijj(l‘——’r,—‘rz—ﬁ)
XO(t—7)drdrdr, , (5)

where AA;;(7,7,,73) is the nonlinear constitutive param-
eters tensor (NCPT) of the chiral medium.

A. Equations for a beam

Let wus consider a  monochromatic beam
U(R,2)=U(R)e 7/, with its amplitude U(R) indepen-
dent on ¢. Note that only the real part of U(R,¢) is ob-
servable. Here R=(x,r) in the three-dimensional posi-
tion vector, while r=(y,z) is the two-dimensional posi-
tion vector in the YZ plane.

From (3), we now obtain AU =A(@)U, where

—ulw)l
—Jjv(@) |’

. —jy(o)I

A)=| o7 (©)

while €(w), p(w), and jy(w) are the Fourier transforms
of e(t), u(¢), and y(¢). We shall use A(w) exclusively
hereafter and denote it simply by A. From (1) we find
that

VXU=—joAU—joVN" (7

where VNL=AAij(a))Ui U;'U, and AA;;(w) represents the
NCPT in the frequency domain [35].

Next, let us make use of the conventional definition of
the Beltrami fields [5] as Q. =E=xjnH in a chiral medi-
um, where the nonlinear impedance of the medium is
defined by n=V'(u+Ap)/(e+Ae), and Ay and Ae are
the nonlinear corrections to u and €, respectively. Only
the nonlinear terms couple the Beltrami fields Q. ; conse-
quently, the Maxwell curl postulates for them take a very
simple form:

VXQi==£K;,Q:+E/f1,Q4 (8)

wherein K1,2=a)(\/a—t$y). We emphasize that Q. are
not linear combinations of E and H, because 7 depends
on E and H. Finally, the functions f, , contain the non-
linear behavior of the medium and, according to (5), may
be generally represented as

f1,2 =a1,2IQ+ |2+/31,2iQ— |2+251,2RC(Q+ ‘QL), )

where @, ,, B; ,, and 8, , are scalar nonlinear coefficients
[36]. Here and hereafter, the asterisk stands for the com-
plex conjugate.

Let us seek a solution to (8) by using the factorizations
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Q+(R)=[e+u(r,x)+exu,(r,x)]ejK'x ,

Kox (10)
Q_(R)=[e v(r,x)+e,v,(r,x)]e” 2
where the unit vectors e*={0,1,%j}/V2, e, ={1,0,0},
while u(r,x), v(r,x), u;(r,x), and v,(r,x) are slowly
varying functions of x and rapidly varying ones with
respect to r. Longitudinal components have been includ-
ed in (10) because the beam is not rigorously transverse.
As shown in Appendix A, approximate equations for the
transverse fields u(r,x ) and v(r,x ) may be found to be

JK8,u=—1Viu—K (a;lul*+B;lv|*)u

(11)
Ky(ayul*+B,lv*w ,

JK,93,0=—1V
where V=32 +232.

B. Equations for the pulse envelope

Now let the electromagnetic field be U(R,t)
=U(R,t)e ~/® where U(R,t) is the six-vector of the
slowly varying complex envelope. In order to predict the
envelope’s deformation during the propagation of a pulse
through the chiral medium, we take the second-order ap-
proximation of the dispersion theory into account. We
terminate the Taylor expansion of U(R,7) in the vicinity
of 7=t to exclude terms higher than of the third order.
Substituting these expansions into (3), we obtain

AT= BA S 1A s |~
AU AU+]a 9,U 2azaU . (12)
Let us now turn to the nonlinear term in Eq. (2). The
terms involving 8,U, 32U, etc., can be neglected to sim-
plify (5) because these small quantities, when multiplied
by the components AA;;, are of a lower order of magni-
tude than the other terms. Thus, we approximately ob-
tain

YXU=—joAu+228) 5
dw
4L B@A) oy sy (13)

2 dw?

We now introduce the Beltrami fields Q.. through the
relations

_ . __ 91
Qi—E:th+—aZ)—a,H , (14)

where 17,=V /€. We emphasize that if u and € have the
same frequency dependences, then 971y/00=0 [37] and
the definitions of Q.. used here reduce to those given in
(5).

Correct to the terms containing 3}, AA;9,H;, and

AAijafH ;» (13) can be transformed to
VXQ1—+K12Q1+Jd 9, Q. F 147K, —37Q,
do 2 do 2
+£1,Q+ » (15)

where f , are given by (9). It follows from (15) that, as
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before, only the nonlinear terms couple the Beltrami
fields Q.

Let us consider a one-dimensional electromagnetic field
depending only on x and ¢ (i.e., d,=09,=0), and seek a
solution of (15) by using the above factorizations (10),
where the substitutions wu;(r,x)=v,(r,x)=0, u(r,x)
—u(x,t), and v(r,x)—v(x,?) must be done. Operating
next by analogy with the previous section, we obtain

7810, + V{19, u=—132u—g (a,lul*+B,lv|*)u

(16)
g0, +Vy 13, v=—

lazv _gz(azlu |2+32|U|2)U

where Vl ,=(dK 12 / dw)” " are group velocities and
g1,=(dK,/do* )=1. In order to analyze (16) we intro-
duce two new mdependent variables: £=—x and
s=x/V,—t. Some algebraic manipulations then reduce

(16) to
jglagu = —%agu —gl(allu !2+ﬁ1|l)

1320 —g,(ay|u > +B,lv [P,

1*)u
(17)
Jjg2(8g+ad v=—

wherea=V!'—v;

C. Duality of the Beltrami representation

In order to obtain E and H from the Beltrami com-
ponents Q.. we can make use of (14):

E=1(Q,.+Q_), (18)
. a -

H+Ljﬂa,H=Q—.8i . (19)
Mo 9@ 2jm

Equation (18) is straightforward and requires no further
comment. A simple way to solve the differential equation
(19) is to apply an iteration procedure, assuming the
dispersion correction 37,/0w to be sufficiently small.
Then the right-hand side of (19) can be substituted into
the left-hand side as a first approximation for H to get

Q_—Q4 97
He——— - —9,Q_) . 20
2 _1_2 r 3 (3Q+—3,Q) 20)
Note that our Beltrami representation is not unique.
Indeed, we can alternatively define

Qi=Ej:jnH——7'7L;a—afa,E ; 21)
then the roles of H and E are interchanged. With the
same initial and boundary conditions for Q., (14) and
(21) conform to physically different solutions correspond-
ing to different initial conditions for the fields E and H.
The nonuniqueness of the Beltrami representation is
analogous to the ambiguity inherent in the various elec-
tromagnetic potentials of classical electromagnetism [38].

III. STABILITY OF THE NONLINEAR
PLANAR WAVE

Equations (11) have a partial solution in the form of a
nonlinear planar wave as
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u=ugexp{jlauy+ppix+js,} ,
(22)
v=vg exp{jlaud+B3)x+jd,} ,

where u,, vy, ¢,, ¢, are specified real constants. Let us
investigate the stability of (22) by applying an approach
conventionally used for self-focusing in ordinary non-
linear dielectric media [39]. Consider the spatial evolu-
tion of a perturbation propagating along the initial wave
vector to generalize the technique developed in [39] for a
single nonlinear Schrodinger equation for our NCSE.

The perturbative solution of (11) can be obtained by re-
placing ug—uy+06u and vy—vy+8&v in (11), where du
and Sv are the small spatial variations. Equations for du
and 8v are then found by neglecting all terms nonlinear
with respect to du and &v:

JK10,8u=—1Vi8u —p (8u+8u*)—p,(v+&v*),

. 23)
JjK,0,8,= —%VESU —p3(8v +8v*)—p(Su +8u*) ,
|
q?
‘2—+K1F—P1 P — P2
q?
—P1 7+K1F"P1 P2
M= 2
P4 ~Pa gz_ +K,I'—p;
~Ps P4 —P3

and A is the column vector consisting of the coefficients
A, B, C, D. Simple manipulations reduce the characteris-
tic equation for I' to the biquadratic form as follows:

K2K3T*—q(K3X |, +K3X;)T?+q*X X3 —p,ps) =0 ,
(26)

where X;=q%/4—p;,i=1,3.
If all scalar nonlinear coefficients are of the same sign,
instability appears when one of the conditions

(27)
(28)

X 1 X3<pps >
K3X,+K3X,<0

holds true. The inequalities (27) and (28) generalize the
classical Bespalov-Talanov criteria [39] originally derived
for media with the conventional Kerr nonlinearity. The
conditions a; ,>0 and B; , >0 provide the fulfillment of
one of the inequalities and, thus, are responsible for the
occurrence of instabilities. As a result, the corresponding
chiral medium is self-focusing.

Suppose a;,<0 and B,,<0 in a certain medium.
Then the solution (22) is stable under the additional re-
striction a8, > a,B,. In particular, such a situation
occurs when neglecting the induced circular
birefringence (i.e., a;=a,=pB,=p,) [21]. On the other
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where p;=K,aud p,=K K,B,v3, and
Ps=Kyayugv,.
Let us seek a solution of this set of equations in the

form

1Biugvg, p3=

du= A exp{j(qt+Ix)}+B*exp{—j(qr+Tx)},

(24)

Sv=Cexp{j(qr+Ix)}+D*exp{—j(qr+Ix)},

where q is a given vector in the YZ plane; T is the pertur-
bation wave number to be sought; and A4, B, C, D are the
unknown constants.

Substitution of (24) into (23) leads to the matrix equa-
tion

M- A=0,

where
P2
P2

(25)

—P3

2

12” +K,I'—p;

hand, the condition a3, < a,f3, fulfills (26) and creates in-
stabilities when

9 _ —L(Klalu(z)+K2a2v% ) <K K ugvo(aB,

16 —aib)

(29)

The instability of a wave beam in a defocusing chiral
medium defined by (29) is analogous to the modulation
instability of a wave packet investigated in [26]. Howev-
er, it should be noted that the analysis given in [26]
refers only to a special case. This special case is denoted
by uy=vy, K,=K,, a,=B=«k(l+o), and q
=pB,=k(1—0) in our notation, ¢ being a real quantity.

IV. CONSERVATION PRINCIPLES

Equations (17) and (11) can be reduced to the canonical
Hamiltonian form [40], which makes the application of
many standard techniques possible. Let us commence by
considering (11). These equations are equivalent to

. —1 OFH —1 8FH
du=a; ! , jo,v=p7! ,
I > Su* / A Sv*

where 8 /8u *, etc., are variational derivatives and

(30)
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ﬂ(u,v;u*,v*)Z%fs [, KV ul?+B,K5 Vwl|?
1
—a,a,lul*—2Ba,|u v |?

~BIBZIU‘4]dsJ_ . (31)

The integral on the right-hand side of (31) has to be eval-
uated in the YZ plane. It can easily be shown that (30)
takes the canonical Hamiltonian form with the Hamil-
tonian defined by (31) if we introduce the complex canon-
ical variables # =1/ a,u and 7=1 Bv. We shall not,
however, use these variables because they differ from u
and v only by constant factors.

It follows from the existence of the canonical represen-
tation that equations of motion can be introduced and
then determined as

fSl|u12dsl=const, fsl|v|2dsl=const, Ff=const ,

(32)

assuming rapidly decreasing boundary conditions at
infinity. The condition # =const gives us a sufficient cri-
terion for self-focusing beams in chiral media. This cri-
terion is the counterpart of the self-focusing criterion for
ordinary dielectrics with Kerr nonlinearity [41-43].

The self-focusing effect should be observable if the in-
equality # <0 holds on the boundary x =x,. Specifying
at x =x, the profile of the beam (for instance, Gaussian)
and assuming the paraxial approximation [21,42] to be
valid, we can obtain an equation for the variation of the
propagated beam width from the condition  =const.

The Lagrangian of a beam in a nonlinear chiral medi-
um may be expressed through the Hamiltonian as

.,£=—21~ij [Byvd, v*—Bw*d,v+aud,u*
S1

—a,u*d,ulds, —H(u,v;u*,v*). (33)

Knowing .L allows us to formulate the variation principle
for (11).

By analogy with (31) we can write the Hamiltonian of a
wave packet described by (17) as

7{(u,v;u",v"’)‘—‘%fﬁoo [a,g 7 t10,ul?+B,g5 '3,v]?

+ jaBv*d,v+jaBwov*
+aay|ult+2Ba,u*lv|?
+B1B,lv|*1ds . (34)

Now the integration must be carried out along the real
axis (— o <5 < ), and the Lagrangian of a wave packet
has the same form as that of a beam (33). For the special
case of a,=p,;, the Hamiltonians (31) and (34) are avail-
able elsewhere [44].

The Hamiltonians (31) and (34) correspond to rapidly
decreasing boundary conditions at infinity: the functions
u and v are assumed to belong to the Schwartz space [45].
In other words, u and v are infinitely differentiable and
decrease, along with their derivatives, faster than |r| ™' as
|r|— 0. The functionals (31) and (33) are permissible
[45], and their variational derivatives are elements of the

Schwartz space as well.

The case of boundary conditions of a finite density [45]
is also of interest, for example, to analyze the interaction
of bright and dark solitons (see Sec. V). Then we have to
consider (11) with  the boundary conditions
u—uyexp(j®), uy=const, and v —0 as |[r|—o. The
functions u —u,exp(j®) and v are assumed to be ele-
ments of the Schwartz space. The Hamiltonian (30) must
be modified for this case to

ﬂ(u,v;u*,v*)=%f$ [, KV ul>+B,K; 1V v|?
1

~a1a2(|u |2"‘u%)2

—2Bay|ul?v|?
—B1B,lv|*1ds, . (35)

The Hamiltonian (34) corresponding to set (17) must be
modified similarly.

V. BELTRAMI-MAXWELL SOLITONS

Let us now proceed to consider soliton solutions of the
nonlinear wave equations (17) and (11). Suppose the
chiral medium has the simple Kerr nonlinearity deter-
mined by the relations Ae=A|E|?, Au=Ay =0, with A as
a known quantity. Assuming the effect of induced circu-
lar birefringence to be negligible [21], we can set
a,=a,=pB,=B,=k. Let us also restrict ourselves to the
two-dimensional case 9, =0.

We will also assume that the polarization state of the
electromagnetic field is almost circular, i.e., one of the
two Beltrami fields is predominant. Let |v]?><<|u|? so
we can neglect the influence of the v component of the
field on its u component. As a result, the governing
differential equation for the u component is a single non-
linear Schrodinger equation that can be exactly solved us-
ing the inverse scattering technique [43]. The governing
differential equation for the v component similarly trans-
forms into a single nonlinear Schrodinger equation, but
with a spatially inhomogeneous internal potential ik
acting as the source term. A possible approximate ap-
proach is available in [46].

Our objective is to apply two other approaches. The
first is based on the general Karpman-Maslov perturba-
tion method [28]. In this method, the v component is
considered as a perturbation of the u soliton, which re-
sults in the linearization of the equation for the v com-
ponent (Secs. V A and V B). The second approach uses
the Hamiltonian formalism and paraxial approximation
for a Gaussian beam (Sec. V C).

A. Bright solitons in beams

Let us analyze some features of the substantially non-
linear phase of beam self-focusing, when the effect of
dispersion spreading compensates for nonlinear focusing
and results in the appearance of solitons. In accordance
with the Karpman-Maslov perturbation method [28], it is
possible to neglect the term |v|%u in the first equation of
(11) and the term |v|?v in the second one. Then the sys-
tem (11) simplifies to
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jK 8, u=—1u —K klul*u , (36)

jK 9, v=—13v—K,klul? , 37

with the u in (37) being a solution of (36). Such a pro-
cedure has been used to examine the branching of vector
solitons in fiber waveguides [16].

Let us assume k > 0 and take a single-soliton solution of
(36) in the form [47]

Ug

u= ———
cosh[ugV kK | (y +2vx)]
Ku?

2

Xexp |jdotJj

x —2jK vy +vx)} , (38)

with uq, ¢, and v as constants. This soliton acts as a
waveguide for the v of (37), whose discrete eigenfunction
spectrum has been given in [48] as

v, (x,y)=exp{ —jE,x —2jK,v(y +vx)}(1—&*)P 12

XF —n,2p—n+l,p—n+l,—1%£ (39)

Here, {=tanh(u,V kK (y +2vx)) and F[...] is the hy-
pergeometric function,

172 2
1 8K, ugkK, 2
p 2 K, ] ’ " 2K, (»=p)
n=0,x1,+2,... . (40)

In view of the assumption |v|?<<|u|?> taken above,
(38)—(40) describe solitons in a chiral medium, when the
initial polarization state of the launched beam is close to
circular.

The number of eigenfunctions in the discrete spectrum
is determined by the inequality n <p. There is a single
eigenfunction (39) with » =0 for K, <K,. In this case,
the soliton’s wave numbers for its u and v components
turn out to be different and, thus, circular birefringence is
displayed by the soliton. For K; <K, <3K,; two eigen-
functions exist (with » =0 and n =1), resulting in
trirefringent solitons. Quadrirefringence should be ob-
servable (eigenfunctions  with n=0,1,2) when
3K, <K, <6K,, and so on.

The multirefringence of solitons is conditioned by the
joint action of nonlinearity and chirality. A similar effect
occurs for Zeeman solitons in quasiresonant nonlinear
magneto-optics [49]. The physical mechanism of the
multirefringence of solitons is the following: the higher
eigenfunctions (39) are coupled soliton states, each being
excited in a conventional nonlinear medium above its
own energy threshold. As follows from (40), in a chiral
medium these energy thresholds are replaced by thresh-
olds with respect to the degree of chirality (as quantified
by the ratio K,/K,). Consequently, at a given energy
and sufficiently large chiral parameter y(w), the
phenomenon of multirefringence of solitons occurs.

The chiral admittance of naturally occurring chiral
media is small [34], even though its effects are easily ob-
servable and have been technologically significant since
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the mid-1800s [1]. This allows us to approximate p in
(40) as p=1+0, with 6=4y /3V'eu. Typically, 0 lies be-
tween 1073 and 10™* [50]. Thus, only one soliton exists
for the one quasicircular polarization and two solitons ex-
ist for the other one, assuming that ¥ >0. Of particular
interest is the evaluation of the critical power density W,
of the soliton at » =1 in (39); for small 6,

vl~Ctanh(u0\/my)cosh—e(uo\/ﬁ(_ly) , 41)

where C is a constant. Correct to first order in 6,

2

._.C_ 9—1

’ (42)
Up

W, =W, ll+

where W, =cu,/8mV/ kK, =cA?% /4w A, is the power
density of the u soliton at v =0, A, is the wavelength, c is
the speed of light in free space, and A, is the soliton’s
width. Note that W in (42) tends to infinity in the
achiral limit (i.e., as 8—0) and consequently, the excita-
tion of the soliton being considered proves to be impossi-
ble when chirality is absent. Taking A, =500 nm and
A, =100 um, we see that W, lies between 10% and 10®
W/cm when the nonlinear index coefficient A varies be-
tween 107! and 1071 esu [21]. Then, in view of
(C/uy)*~10"* we find that the value of W, turns out
to be comparable with W, even at small ; which is to
say that the soliton under consideration is observable.
Thus, even small chirality leads to a qualitatively novel
effect: an asymmetry of the solitonic spectrum with
respect to the handedness of the field.

B. Bright solitons in wave packets

Let us now consider the nonlinear phase of pulse prop-
agation resulting in the occurrence of space-time solitons.
For this purpose we return to (17).

Let us assume that g;«>0 in the nonlinear
Schrédinger equation for the ¥ component and take the
single-soliton solution of this equation in the form analo-
gous to (38):

Ug {.¢ .Kuég} 43)
u= ———exp {jdo—j—E | -
cosh(ugsV/|g,]) 0 2

Then we can write the discrete eigenfunction spectrum
for the v component as



52 NONLINEAR ELECTROMAGNETICS IN CHIRAL MEDIA: ... 1055

(1_§2)(p —n)/2

v, (x,y)=exp [igzas —J(E,+1g,a*)&

XF —n,2p—n+1,p—n+l,1—;£ ,  (44)

with {=tanh(uos1/|«g,|). E, and p can be obtained
from (40) after the replacements K, , —g;, and k— —«
have been carried out.

In a chiral medium it is possible that the coefficients g,
and g, are of opposite signs. For instance, at low fre-
quencies, where €(w) and u(w) are almost constant while
v(w)~w, the dispersive properties of the chiral medium
are determined chiefly by the frequency dependence of
v(w). Let g,k <0 and g,«k>0. Then, eigenfunctions of
the kind given on the left-hand side of (44) are absent;
thus, the soliton part of the field contains Q, but not Q_,
and the helicity of the soliton part does not depend on the
initial conditions. The other Beltrami field Q_ can be
present in the nonsoliton background and/or forms a
dark soliton, depending on the initial conditions.

Also of special interest may be the case when the fre-
quency dependence of ¥ can be ignored and consequent-
ly, g,—g,. With this condition and the above-
established restrictions on «; and S;, the system (17) can
be reduced, by analogy with [14], to the canonical
Manakov system [22].

C. Interaction of bright and dark solitons

The interaction of bright and dark solitons in nonlinear
optical fibers was numerically studied by others [51,27],
who showed that a dark soliton in a defocusing medium
exhibits the property of self-focusing. We discuss here
the manifestation of this effect in chiral media, and —in
contrast to [51,27]—we develop an analytical theory
based on the Hamiltonian formalism and paraxial ap-
proximation.

Let us consider a beam launched into a defocusing
chiral medium with k <0. Equation (36) is amenable to
exact integration and yields the dark soliton [52]

u=ugtanh[uyV/ |k|Kylexp{jrudx} . (45)

Consistently with the framework of paraxial approxi-
mation, the function v can be represented by a Gaussian
beam as [53]

—_ Y _yr e yrdf
v ‘/f(_x)exp{ a(zlfz ]K22fdx , (46)

where a is the known beam waist and f(x) is the func-
tion being sought. Substituting (45) and (46) into the

Hamiltonian (34), and using the conservation law
Ff=const, we obtain
2
af 21 3 21 — F(2f ) =const . 47)
dx Ry f Ryf R

In this equation,

a 172
—1 2 _“0

Rp=3K,a5, RyL= v
0

K,
2V2|«|

are respectively the diffraction and the nonlinear radii,
while

172 2

Yo J.7 cosh™ABf e~ Tad  4y)

2
T

F(f)=4
Vo
and B=uqayV |k|K,/2. The integral in (48) cannot be
evaluated analytically. Its general properties and
different representations are given in Appendix B.

Taking the wave front in the initial section to be pla-
nar, we should supplement (47) with boundary conditions
fl.—o=1and (df /dx)|, —o=0. This leads to
2

a |~y (49)
dx

where
2__ — —
_fi=1 . f-1  F(H—FQ)
fR}  fRYy Ry

with the third term on the right-hand side accounting for
the role of the dark soliton.

Qualitative analysis of (49) can be performed by analo-
gy with [54]. The behavior of the right-hand side of (46)
is fully determined by the real positive roots of the func-
tion II(f). When the third term is absent from the right-
hand side of (50), the only root is f =1. In this case the
function II(f) is negative if f < 1; otherwise it is positive
and II(f)—const as f— . Thus, starting with the ini-
tial value f=1, f will increase indefinitely, resulting in
self-defocusing of the wave. The incorporation of the
dark soliton implies that the equation IT(f)=0 may have
an additional root. When f =1 is a multiple root,
waveguiding will occur [54].

Let us analyze the equation II(f)=0 in the vicinity of
the waveguiding regime where the linear approximation
of the function F(f) can be wused: F(f)
~F(1)+D(1—f), D=—(dF/df)|;—,. Then the right-
hand side of (50) becomes quadratic in f. One of the two
roots is f =1, the other is f = f;, where

_ R4
fo=7p

and b=R;2+Ry%, D >0 in accordance with Appendix
B. The waveguiding condition can be found by enforcing
the equality f,=1. This is imposed on the amplitude of
the dark soliton u, to delineate the waveguiding regime
through

I f) (50)

(b+1v b*+4DR;?R3}E ), (51)

172 2
u ©
D=4|2% [—° Bf cosh™3(Bf 3)e ~Vdd
T Vo 0
2R?%
=1+ ?L (52)
Rp

It follows from (51) that f,>1 at D <1+2R% /R}.
Hence, the function II(f) is positive over the interval
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1< f <fy. It implies that the beam (46) will not spread
indefinitely but only up to the value f = f), after which it
will turn back to the initial state, etc. Thus, the
waveguide will be oscillatory. The situation will be
different if D>1+2R%; /R}, whence f,<1 and
II(f)>0, fo<f <1, and the beam will be periodically
compressed from the initial point f =1 up to the point
f=ro

Thus, the dark soliton of a given polarization state
changes the focusing characteristics of a chiral medium.
It may be responsible for creating a waveguiding regime,
as well as for the focusing of beams with the other polar-
ization state. The features revealed above manifest them-
selves when the dark soliton’s amplitude exceeds some
crucial value. If the amplitude is less than the critical
value, all roots of II(f) except f =1 vanish and conse-
quently, the medium remains defocusing for both polar-
ization states [55]. We remark here that equivalent re-
sults can be similarly obtained for a wave packet with the
Gaussian envelope and three-dimensional ring dark soli-
tons, whose existence has been predicted by Kivshar and
Yang [56].

VI. DISCUSSION

In this paper we have developed a theory of the self-
action of waves in nonlinear chiral media. The use of
Beltrami fields in nonlinear problems turned out to be an
effective instrument of analysis, allowing the reduction of
the initial problem to a compact system of nonlinear cou-
pled Schrodinger equations. Our approach is based on a
variant of the general Karpman-Maslov perturbation
method [28]. This approach is characterized by the use
of a nonlinear Schrodinger equation to perturb another
nonlinear Schrédinger equation.

Another variant of the Karpman-Maslov method based
on the exact Manakov solution of the vector nonlinear
Schrodinger equation [22] may also be of interest. In this
approach, the unperturbed equation is obtained from (11)
after assuming that K,=K, and a;,=a,=p,=pB,=«k.
This approach is applicable only for a weakly chiral
medium, but it allows the relationship between u and v to
be arbitrary. We also point out that the Hirota method
[20], as well as explicit numerical solution procedures,
remain unexplored in the present context.

The joint action of chirality and nonlinearity results in
several interesting physical effects, such as mul-
tirefringent solitons, the availability of solitons with
specified circular polarization states, and the focusing of
solitons of specific polarization states in a defocusing
medium under the effect of the oppositely polarized dark
soliton. Similar effects can be predicted for electromag-
netic pulses as well: for instance, the compression of a
left-circularly polarized pulse is possible simultaneously
with the decompression of the right-circularly polarized
pulse. Thus, the degree of chirality controls the polariza-
tion states of solitons.

The effects discussed in our paper can also manifest
themselves in certain noncentrosymmetric optically ac-
tive crystals (for instance, quartz and LilO;). The fact
that the optical anisotropy has not been taken into ac-
count by us is not critical: all equations derived above
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are also valid for anisotropic crystals if the radiation is
taken to propagate along a crystallographic axis. Of even
greater interest for the Beltrami-Maxwell soliton observa-
tion are synthetic chiral media. Linear composite chiral
materials are studied extensively (see [2,3] and references
therein). As also mentioned above, a composite material
consisting of a linear gain host medium and small chiral
scatterers have been proposed [11] to reduce the distri-
buted feedback laser threshold gain.

A synthetic nonlinear chiral medium can be created as
a dilute suspension of chiral objects with constitutive pa-
rameters €, g, and ¥ in an achiral, nonmagnetic, non-
linear host medium characterized by the nonlinear per-
mittivity €;+A|E,,.|%, where E, . is the local electric field
in the composite medium. It is convenient to quantitate
the physical properties of such a medium using the
Maxwell Garnett approach [2]. Generalization of this
approach to the nonlinear case gives us an effective medi-
um, the Maxwell Garnett estimates of whose constitutive
parameters are €4+ AglE|% teg and 7.5 It should be
emphasized that the distinction of E,,. from the macro-
scopic mean field E has to be taken into account in the
nonlinear term: E,,,=LE with L as a constant
coefficient. Assuming the chirality parameter to be small,
we find that [3] e.=€,+g(e—€)), pg=po and vy g=g7,
while
+N

|_2+N
N ¢

€E—E€
— L2, (53)

€

where g =3Ne,/[e+2e,—N(e—¢€,)], N is the volumetric
proportion of chiral scatterers, and L =g(e+2¢€,)/3Ne,.
As N increases from O, y . increases from zero towards y
and A decreases from A towards zero. Using this ap-
proach thus, one can choose a value of N which provides
acceptable characteristics of a composite medium with
respect to both chirality and nonlinearity.

Finally, there are some interesting physical phenomena
characteristic of nonlinear chiral media but which were
beyond the scope of this paper. An example is furnished
by the dependence of group velocity on pulse intensity.
In nonlinear dielectrics this dependence leads to the effect
of the “turning-over” of pulses, as well as to the forma-
tion of shock waves of envelopes at their leading or trail-
ing edges [57]. We conjecture that shock waves of
different polarization states will have different group ve-
locities in a chiral medium. The result would be the spa-
tial separation of shock waves as they travel through the
medium.

Novel effects may be expected in periodically inhomo-
geneous, nonlinear chiral media. Analysis of Bragg
diffraction by a linear chiral grating shows certain
features of the diffraction pattern attributable solely to
the degree of chirality [58]. This causes us to anticipate
that the joint action of the chirality, periodicity, and non-
linearity will significantly extend the range of technologi-
cally exploitable phenomena.
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APPENDIX A

Here we give the derivation of the system (11). After
substituting the factorizations (10) into (8) we obtain

T/I—__z—(jay—az yu=(K,+f )u

1. 1
——ﬁ]axu+azu,=\/—§flu ’ (A1)
1
V2

and three similar relations for v and v;. Assuming u; to
be small, we can further neglect the nonlinear term f; in
the first equation of (A1l). In order to eliminate u; now,
let us differentiate the first one of (A1) with respect to z
and use the result for d,u; in the second equation of (A1l).
Next, we differentiate the first equation of (A1) with
respect to y and use d,u,; from the third equation of (A1).
These two manipulations yield

Viu=2jK 0, u~+2f Ku,

axu—ayu,——‘%flu R

(A2)

which is identical to the first equation of the system (11).
The equation for v is obtained in the same way. Once the
system (11) has been solved, it is not difficult to find u,
and v; from (A1) and the corresponding system for v and
v;.

Normally, equations for slow amplitudes in nonlinear
optics are derived from a wave equation for the electric
field (see, for instance, [14]). The longitudinal field com-
ponents are neglected. This is possible only because the
total electric field as well as its transverse component
obey identical wave equations. A very different situation
arises with the Beltrami fields, and therefore the deriva-
tion of (11) is significantly different.

1057

APPENDIX B

The function F(f) from Eq. (48) correct to a constant
factor is given by the integral

I(f)= [ " cosh™(Bf 9)e " T'd ¥, (B1)

at real positive values of f. Note that I (f) is always posi-
tive and dI/df <0. The function I(f) can be expanded
into an asymptotic series in terms of powers of f 1. To
do this, we make use the power series expansion in
X=exp(—2Bf®#) of the function cosh %(Bf3J)
=4X (1+X)"2 Then we obtain

I(f)=4lim 3 (=1)""'m fo"" exp{ —9*—2mBf9}d S

m =0

—2v7lim S, (—1)" *'m exp{(Bmf)?)

0—0,, -1

Xerfc(Bmf +6) , (B2)

where erfc(x) is the additional probability integral [59].

Using the asymptotic expression for erfc(x) at large x,

performing some algebraic manipulations, and taking the

limit 6—0, we finally find that

2n

(—1)"
n!

1
Bf

T
2Bf

I(f)=

1+2 3
n=1

X(22"—1)|B,,| | , (B3)

where B,, are the Bernoulli numbers. In the limit
f— o, it follows that I (f)—0as f ™.
For small f, the integral I(f) may be developed as the

Taylor series

o 2n+1(22n+2_1)32n+2
Ih=vm3 (2n +201

(Bf)*" . (B4)

This expansion shows that 1(0)=V'7/2.
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